Edge criticality in secure graph domination
نویسندگان
چکیده
The domination number of a graph is the cardinality of a smallest subset of its vertex set with the property that each vertex of the graph is in the subset or adjacent to a vertex in the subset. This graph parameter has been studied extensively since its introduction during the early 1960s and finds application in the generic setting where the vertices of the graph denote physical entities that are typically geographically dispersed and have to be monitored efficiently, while the graph edges model links between these entities which enable guards, stationed at the vertices, to monitor adjacent entities. In the above application, the guards remain stationary at the entities. In 2005, this constraint was, however, relaxed by the introduction of a new domination-related parameter, called the secure domination number. In this relaxed, dynamic setting, each unoccupied entity is defended by a guard stationed at an adjacent entity who can travel along an edge to the unoccupied entity in order to resolve a security threat that may occur there, after which the resulting configuration of guards at the entities is again required to be a dominating set of the graph. The secure domination number of a graph is the smallest number of guards that can be placed on its vertices so as to satisfy these requirements. In this generalised setting, the notion of edge removal is important, because one might seek the cost, in terms of the additional number of guards required, of protecting the complex of entities modelled by the graph if a number of edges in the graph were to fail (i.e. a number of links were to be eliminated form the complex, thereby disqualifying guards from moving along such disabled links). A comprehensive survey of the literature on secure graph domination is conducted in this dissertation. Descriptions of related, generalised graph protection parameters are also given. The classes of graphs with secure domination number 1, 2 or 3 are characterised and a result on the number of defenders in any minimum secure dominating set of a graph without end-vertices is presented, after which it is shown that the decision problem associated with computing the secure domination number of an arbitrary graph is NP-complete. Two exponential-time algorithms and a binary programming problem formulation are presented for computing the secure domination number of an arbitrary graph, while a linear algorithm is put forward for computing the secure domination number of an arbitrary tree. The practical efficiencies of these algorithms are compared in the context of small graphs. The smallest and largest increase in the secure domination number of a graph are also considered when a fixed number of edges are removed from the graph. Two novel cost functions are introduced for this purpose. General bounds on these two cost functions are established, and exact values of or tighter bounds on the cost functions are determined for various infinite classes of special graphs. Threshold information is finally established in respect of the number of possible edge removals from a graph before increasing its secure domination number. The notions of criticality and stability are introduced and studied in this respect, focussing on the smallest number of arbitrary edges whose deletion necessarily increases the secure domination number of the resulting graph, and the largest number of arbitrary edges whose deletion necessarily does not increase the secure domination number of the resulting graph.
منابع مشابه
On the q-criticality of graphs with respect to secure graph domination
A subset X of the vertex set of a graph G is a secure dominating set of G if each vertex of G which is not in X is adjacent to some vertex in X and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X − {v}) ∪ {u} is again a dominating set of G. The secure domination number of G is the cardinality of a smallest secure dominating set of G. The noti...
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملMatching properties in connected domination critical graphs
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let c(G) denote the size of any smallest connected dominating set in G. A graph G is k-connected-critical if c(G)= k, but if any edge e ∈ E(Ḡ) is added to G, then c(G+ e) k − 1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G ...
متن کاملCritical properties on Roman domination graphs
A Roman domination function on a graph G is a function r : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman function is the value r(V (G)) = ∑ u∈V (G) r(u). The Roman domination number γR(G) of G is the minimum weight of a Roman domination function on G . "Roman Criticality" has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Optimization
دوره 18 شماره
صفحات -
تاریخ انتشار 2015